Flight control in the hawkmoth Manduca sexta: the inverse problem of hovering.

نویسندگان

  • T L Hedrick
  • T L Daniel
چکیده

The inverse problem of hovering flight, that is, the range of wing movements appropriate for sustained flight at a fixed position and orientation, was examined by developing a simulation of the hawkmoth Manduca sexta. Inverse problems arise when one is seeking the parameters that are required to achieve a specified model outcome. In contrast, forward problems explore the outcomes given a specified set of input parameters. The simulation was coupled to a microgenetic algorithm that found specific sequences of wing and body motions, encoded by ten independent kinematic parameters, capable of generating the fixed body position and orientation characteristic of hovering flight. Additionally, we explored the consequences of restricting the number of free kinematic parameters and used this information to assess the importance to flight control of individual parameters and various combinations of them. Output from the simulated moth was compared to kinematic recordings of hovering flight in real hawkmoths; the real and simulated moths performed similarly with respect to their range of variation in position and orientation. The simulated moth also used average wingbeat kinematics (amplitude, stroke plane orientation, etc) similar to those of the real moths. However, many different subsets of the available kinematic were sufficient for hovering flight and available kinematic data from real moths does not include sufficient detail to assess which, if any, of these was consistent with the real moth. This general result, the multiplicity of possible hovering kinematics, shows that the means by which Manduca sexta actually maintains position and orientation may have considerable freedom and therefore may be influenced by many other factors beyond the physical and aerodynamic requirements of hovering flight.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Responses of Descending Visually-Sensitive Neurons in the Hawkmoth, Manduca sexta, to Three-Dimensional Flower-Like Stimuli.

Hawkmoths rely on vision to track moving flowers during hovering-feeding bouts. Visually guided flight behaviors require a sensorimotor transformation, where motion information processed by the optic ganglia ultimately modifies motor axon activity. While a great deal is known about motion processing in the optic lobes of insects, there has been far less exploration into the visual information a...

متن کامل

Control Effectiveness Analysis of the hawkmoth Manduca sexta: a Mul- tibody Dynamics Approach

This paper presents a control effectiveness analysis of the hawkmoth Manduca sexta. A multibody dynamic model of the insect that considers the time-varying inertia of two flapping wings is established, based on measurement data from the real hawkmoth. A six-degree-of-freedom (6-DOF) multibody flight dynamics simulation environment is used to analyze the effectiveness of the control variables de...

متن کامل

A multibody approach for 6-DOF flight dynamics and stability analysis of the hawkmoth Manduca sexta.

This paper investigates the six degrees of freedom (6-DOF) flight dynamics and stability of the hawkmoth Manduca sexta using a multibody dynamics approach that encompasses the effects of the time varying inertia tensor of all the body segments including two wings. The quasi-steady translational and unsteady rotational aerodynamics of the flapping wings are modeled with the blade element theory ...

متن کامل

Wide-field motion tuning in nocturnal hawkmoths.

Nocturnal hawkmoths are known for impressive visually guided behaviours in dim light, such as hovering while feeding from nectar-bearing flowers. This requires tight visual feedback to estimate and counter relative motion. Discrimination of low velocities, as required for stable hovering flight, is fundamentally limited by spatial resolution, yet in the evolution of eyes for nocturnal vision, m...

متن کامل

A Search for Optimal Wing Strokes in Flapping Flight: Can Engineers Improve Upon Nature?

Computational modeling is used to explore the efficiency of hovering flight in a hawkmoth (Manduca Sexta). While flying insects such as hawkmoths are excellent flyers, their wing-strokes are constrained by a number of factors including anatomy, developmental requirements, biological material properties and evolutionary history. Engineered micro-aerial vehicles are not subject to similar constra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 209 Pt 16  شماره 

صفحات  -

تاریخ انتشار 2006